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Abstract

This paper introduces Canonical Autocorrelation Analysis (CAA), a method for

finding multiple-to-multiple linear correlations within a single set of features. CAA

can be useful when looking for hidden parsimonious structures of relationships in data,

each involving only a small subset of all features. Correlations discovered by CAA are

highly interpretable as they are formed by pairs of sparse linear combinations of the

original features of the data. In addition, this results in useful visualizations of data.

We show how CAA can be of use as a tool for anomaly detection when a structure

of correlations characteristic of the expected data is not followed by anomalous data.

In the case of radiation threat detection, this allows characterizing patterns of corre-

lations between subset sets of bins of gamma-ray spectra known to represent benign

background radiation, and flagging spectral measurements that do not follow the same

patterns of correlations as anomalies potentially reflective of the presence of radiation

threats. The resulting spectral anomaly detection technique performs substantially

better than an unsupervised alternative prevalent in the domain, while providing valu-

able additional insights for threat analysis.
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1 Introduction

Ever since the invention of nuclear weapons, radiation threat detection has been a security

priority around the globe. Even though the total number of weapons has declined since

the Cold War, a continued investment in nuclear arsenal has increased the destruction

capacity of existing warheads, thus the threats that characterized the Cold War are still a

main concern for the international community [23].

Furthermore, a vast number of such weapons are tactical nuclear weapons, which are

characterized by their incapability to inflict strategically decisive damage to the military

or economy of the target, a trait that has kept them out of current nuclear arms control

arrangements. Many of them are kept under dubious security standards, as is the case

of many that are stored in remote, hard-to-defend locations, and to make matters worse,

these are small and portable warheads that, although incapable of devastating a country’s

economy in a single blow, would cause large-scale destruction if used. All together, this

makes up for a dangerous recipe that increases the risk of nuclear warheads falling in the

hands of terrorists [15].

Robbery of stolen fissile material that can be used to build radiological devices, com-

monly known as“dirty bombs”, is also a concern for governments [16]. This problem

reached its peak after the collapse of the Soviet Union, when the risk of people who are

unaware of the dangers of radioactive material getting hold of it was illustrated by the

case of a man who died of radiation sickness after storing material stolen from a nuclear

waste facility in a kitchen cabinet [10]. Such risks are still present; in 2015 international

alerts were triggered after a container full of medical isotopes was stolen in Mexico, where

two years earlier thieves accidentally got hold of a container with radioactive material used

in medical equipment[20]. Even though the destruction capacity of such devices cannot

be compared to that of a nuclear warhead [16], they could expose thousands of people to

dangerous levels of radiation [2].

Thus, effectively monitoring borders to prevent smuggling of radioactive threats, as

well as monitoring the interior for signatures of possible threats, are crucial needs for many

countries, particularly for those at risk of being targeted by terrorist groups. This, how-

ever, is not an easy task. Radioactive materials are typically shielded, and the shielding can

be engineered to make detection harder. In addition, faint sources of potentially harmful

radiation can be hard to detect in scenes where intensity and spectral characteristics of

benign background radiation vary significantly. This is often the case in man-made envi-
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ronments, and so area searches for radiation threats throughout cities or inside buildings

have to recognize and address this challenge.

An additional challenge comes from the fact that different types of threats follow dif-

ferent spectral patterns, and even if templates of some common threat types are available,

relying on supervised analysis of field data is risky. Supervised detectors may fail to detect

threats that were not present in the training data, or which were shielded in a particularly

unexpected fashion. Therefore, efforts have been made to develop unsupervised methods

that successfully detect threats without relying on source templates.

This paper presents a novel machine learning method - Canonical Autocorrelation Anal-

ysis - designed for finding multiple-to-multiple linear correlations within a single set of

variables. The capability of automatically identifying multivariate structures of correlation

make CAA naturally fitting in data-driven discovery, and it can be used as a building

block for interpretable single-class learning and unsupervised-learning algorithms. Apply-

ing CAA for radiation threat detection enables us to characterize harmless radiation with

a structure of correlations spanning sets of energy bins. Once this characterization is es-

tablished, it can be used for spectral anomaly detection, as threats can be expected to

not follow the same characterization as harmless ambience. We show in experiments that

the ability of CAA to identify parsimonious subsets of features and later use it to model

background radiation variability makes it more robust at threat detection than one of the

most popular unsupervised methods used in the domain: a Principal Component Analysis

(PCA) spectral anomaly detection method that considers all dimensions of spectra in linear

combinations corresponding to subsequent principal components [24].

CAA is an extension of Canonical Correlation Analysis (CCA)[11]. CCA and its variant

Sparse CCA[27] are useful tools for finding multivariate correlations between two sets of

features. They work well when the features describing a task at hand are naturally divided

into separate sets. For example, it can be used to find correlations between genes and

diseases, when both types of information are available for a set of patients.

We believe that the capability of identifying relationships between sets of features is of

general interest, even in cases when the natural or intuitive splits of features into separate

subsets are not obvious. Therefore, we developed CAA, a method that discovers pairs of

subsets of features that are maximally correlated, and just like CCA, CAA can identify

multiple such pairs if the corresponding correlations exist. Figures 1a and 1b illustrate

the different use cases of Sparse CCA and CAA, respectively. Sparse CCA finds multiple-

to-multiple linear correlations between subsets of the features in a matrix X ∈ Rn×p and
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subsets of features in a matrix Y ∈ Rn×q, where the rows of both matrices correspond to

the same items but the columns represent separate sets of variables, e.g., X being genes

and Y being diseases. When the division of the features into two sets is not natural we

have a single matrix X ∈ Rn×m where all features are merged together, CAA then finds

multiple-to-multiple correlations between disjoint subsets of these features.
x1,1 · · · · · · x1,p y1,1 · · · y1,q

...
. . .

. . .
...

...
. . .

...

︸ ︷︷ ︸
X

xn,1 . . . . . . xn,p ︸ ︷︷ ︸
Y

yn,1 · · · yn,q


(a) Sparse CCA set up: X and Y are two matrices where the rows correspond to the same items
but the columns represent separate sets of variables. Sparse CCA finds sparse multiple-to-multiple
linear correlations between subsets of the features in matrix X and subsets of features in matrix Y .

x1,1 · · · · · · x1,m

...
. . .

. . .
...

︸ ︷︷ ︸
X

xn,1 · · · · · · xn,m


(b) CAA set up: In cases where there is no natural or intuitive division of the features into two
sets, a possible division represented by the dotted line is no longer given. Instead, all features are
part of one matrix X. CAA finds pairs of disjoint subsets of features in this matrix that yield
strong correlations.

Figure 1: Comparison between scenarios where Sparse CCA and CAA can be used.

Correlations retrieved by CAA can be seen as bidimensional projections where a scatter

plot of the data follows a linear correlation and each axis corresponds to a sparse linear

combination of the features, with both axes having disjoint feature support (eg. as in

Figure 2b).

Extraction of informative projections has been tackled in the past [7][8]. Our work

differs from those in two primary ways. First, each of our axes is defined by a linear

combination of features, rather than a single feature, which enables the discovery of complex

structures without loosing interpretability. Secondly, our method is unsupervised and its

objective is to retrieve projections that contain multiple-to-multiple linear correlations,

rather than focus on separating the classes.
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Other methods for finding sparse representations of data comprised in a single matrix

include the well-known Sparse Principal Component Analysis (Sparse PCA). However,

CAA is fundamentally different from Sparse PCA. While CAA resembles Sparse PCA in

the sense that it finds sparse representations of data contained in one matrix, Sparse PCA

maximizes retained variance of data in one-dimensional projections, while CAA finds two-

dimensional projections where correlation between two subsets of features is maximized.

CAA specifically seeks projections composed by pairs of strongly correlated linear combi-

nations of features, enabling discovery of hidden characteristic correlations in data, which

cannot be easily found with other methods such as Sparse PCA. Section 4.2 goes into the

details of the difference between the two methods from a theoretical perspective.

In the remainder of this paper, Section 2 contains a description of the data, Section 3

presents a brief review of related work, in Section 4 the proposed methods are described

in detail, and Section 5 reviews the experiments when applying CAA to both synthetic

and radiation threat detection data. Section 6 explores the applicability of the method to

other domains, using the Breast Cancer Wisconsin benchmark data set. Finally, Section 7

concludes the paper and discusses future work directions.

2 Data description

Radiation is often characterized using gamma-ray spectra, which are typically represented

as vectors of photon counts registered by the sensor at subsequent discrete and disjoint

intervals of energy. These vectors, called in the application domain the energy spectra,

become data points for analysis. In our research, 128 energy bins are used, thus each data

point is a vector in R128.

There are two types of data used in this research: harmless background and threat-

infected background.

• Harmless background Over a period of five consecutive days a truck drove around

downtown Sacramento, California, with a double 4x16 NaI planar detector on its

back. The data contains approximately 70,000 one-second observations collected

enroute, that reflect background radiation as well as any nuisance sources.

• Threat-injected background Synthetic threat injections done at the Lawrence Liver-

more National Laboratory. Simulated data mimics 15 types of sources. For each
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source, a data set of 10,000 observations is created by embedding synthetic threat

signatures in harmless background data.

Once the model is trained using this data, it can be used on data collected by mobile

detectors of radiation threat.

3 Literature review

3.1 Correlation analysis

Canonical Correlation Analysis is a statistical method useful for exploring relationships

between two sets of variables. It is used in machine learning, with applications to multiple

domains, including applications to medicine, biology and finance: [9], [6], [25] and [26].

A modified version of the algorithm was proposed by Witten et al. [26][27]. Sparse

CCA, an L1 variant of the original CCA, adds constraints to guarantee sparse solutions.

This limits the number of features being correlated. Their formulation of the maximization

problem also differs from the traditional CCA algorithm. We will use this version since it

is suitable for our needs.

Principal Component Analysis (PCA) and its variant Sparse PCA are also related to

our research. PCA and Sparse PCA find orthogonal projections of the data onto linear

spaces where the variance of the data is maximized. This procedure aims at preserving as

much variance as possible, while reducing dimensionality. The goal of CAA is different:

it finds two-dimensional projections that emphasize correlation, where such correlations

constitute interpretable patterns that are present in the data.

Additional work that shares the goal of our research is [9] and [6]. Using the notion of

autocorrelation, they attempt to find underlying components of functional magnetic reso-

nance imaging (fMRI) and electroencephalogram (EEG), respectively, that have maximum

autocorrelation, and to do so they use CCA. The type of data they work with differs from

ours in that their features are ordered, both temporally and spatially. To find autocorrela-

tions, they take X as the original data matrix and construct Y as a translated version of X,

such that Yt = Xt+1. Since our data is not ordered we cannot follow the same procedure

and must instead develop a new technique for finding autocorrelations.
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3.2 Radiation source detection

Efforts to perform radiation threat detection in an unsupervised fashion tackle the problem

as an anomaly detection task. Anomaly detection is the problem of finding patterns in data

that do not follow the expected behavior[4].

One anomaly detection approach to detect radioactive sources is known as K-Sigma,

which fits a parametric model assuming a Poisson distribution to the total gross photon

counts of harmless radiation data [5]. This method takes as input the parameter K and

flags a data point if its total photon counts is over K standard deviations away from the

fitted model.

Unlike K-Sigma, which is based on total energy counts, spectral anomaly detection

based on Principal Component Analysis (PCA) [14][24] takes into account photon counts

for each bin. Using data from background radiation, it learns a PCA model. The first

components capture the most variance, which in this case corresponds to what is considered

“typical” variation for background. The algorithm drops the top components and projects

new data on to the remaining PCA components, where variance should be low and therefore

the observed discrepancy can be used as a threat score.

This PCA-based spectral anomaly detector, based on [17], works by calculating the

magnitude of the residual after a background-subtracting projection. The background-

subtracting is a strict projection onto the subspace spanned by the top few principal

components of the covariance matrix. An alternative way of finding this projection is

by a dilation modified projection where the correlation (not covariance) matrix is used

to learn the low dimensional projection and then appropriate scaling of the measurement

dimensions is performed before projection and scaled back after the projection. In any

case, the transformation computes the estimated background contribution to a radiation

measurement, assuming that the top few principal components represent expected typical

background variation. After projection, the magnitude of the residual essentially provides

the PCA-based spectral anomaly score, as it should be negligibly low for spectra consistent

with training data distributions. Appendix B contains the PCA spectral anomaly detector

algorithm.
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4 Methodology

4.1 Canonical Autocorrelation Analysis

Given two matrices X ∈ Rn×p and Y ∈ Rn×q, CCA aims to find linear combinations of

their columns that maximize the correlation between them. Usually, X and Y are two

matrix representations for one set of objects, so that each matrix is using a different set of

variables to describe them.

We use the formulation of Sparse CCA given by [26]. Assuming X and Y have been

standardized, the constrained optimization problem is:

maxu,vu
TXTY v

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2
for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(1)

When c1 and c2 are small, solutions will be sparse and thus only a few features are

correlated.

Our goal is to find correlations within a single set of variables, which can be understood

as having identical matrices X and Y . Applying Sparse CCA when X = Y results in trivial

solutions u = v, corresponding to Sparse PCA solutions for X [27].

The naive approach to finding correlations between disjoint subsets of features would

consist of an exhaustive search, trying all possible ways of splitting the features into two

groups and applying Sparse CCA. This may be computationally infeasible, as the number of

times Sparse CCA would have to be applied is O(
(
m
t

)
), where m is the number of variables

of X and t = |{ui 6= 0}| is determined by the constraints c1 and c2 that would be applied

to the original matrix X to obtain the desired level of sparseness.

We developed an algorithm capable of finding such autocorrelations by imposing an

additional constraint in Equation 1 to prevent the model from correlating each variable

with itself. Using the Lagrangian form of the added penalty, the problem can be written

as follows:

maxu,vu
TXTXv − λuT v

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2
(2)
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This will penalize vectors u and v for having high values for the same component, which

is precisely what we are trying to avoid. Through proper factorization we are able to solve

this using Sparse CCA algorithm.

Theorem 1. Solving Equation 2 is equivalent to solving Sparse CCA for the pair of ma-

trices

X̂ = [V (S2 − λI)]T and Ŷ = V T .

where the Singular Value Decomposition of X is X = USV T and I is the identity matrix.

Proof. First, notice that

uTXTXv − λuT v = uT (XTX − λI)v.

Therefore, the CAA problem can be written as:

maxu,vu
T (XTX − λI)v

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2
(3)

Finding the Singular Value Decomposition of X, we have:

X = USV T

⇒ XTX = V S2V T

⇒ XTX − λI = V S2V T − λV V T

= V (S2 − λI)V T

Now, setting X̂ = [V (S2 − λI)]T and Ŷ = V T , the problem becomes:

maxu,vu
T X̂T Ŷ v

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2
(4)

This problem can be solved using Sparse CCA, and since the solutions obtained with

this method are independent of the factorization of X̂T Ŷ , solving this is equivalent to

solving the CAA maximization problem in Equation 3.
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Since the solution to CAA is obtained by applying Sparse CCA to newly defined ma-

trices, the ability of Sparse CCA to retrieve multiple pairs of canonical vectors is inherited

by CAA. Therefore, for each matrix X we can find k ≤ m pairs of canonical vectors, where

we will refer to the ith pair as (u(i), v(i)), for i = 1, ..., k. CAA may return fewer pairs

than m when there are not enough vectors for which the data shows a substantial linear

correlation when projected onto the planes defined by u and v.

The maximization problem as formulated above is not convex with regard to λ and it is

sensitive to variations of this parameter. Our current approach to solving CAA performs

a grid search and returns up to m pairs of canonical vectors u, v. The grid search uses

an evaluation metric for relative sparseness developed for this purpose. Vectors u and

v are considered to have relative sparseness if components with high values in u do not

coincide with high valued components in v. This can be measured by the metric defined

in Equation 5, where the case of t(u, v) = 1 corresponds to vectors u and v having strictly

disjoint support.

t(u, v) = 1−
∑
j

|ujvj | (5)

The ith CAA solution can therefore be obtained by finding the minimum value of λ for

which the corresponding CCA solution of X̂ and Ŷ have a relative sparseness of 1. Now,

instead of applying Sparse CCA O(
(
m
s

)
) times to find a pair of canonical variates, as in

the naive approach, we apply it O(λ) times, where O(λ) refers to the resolution the grid

search.

4.2 Relationship to Sparse PCA

As mentioned in Section 1, CAA and Sparse PCA have fundamentally different objectives,

but given that Sparse CCA applied to identical matrices (X = Y ) results in Sparse PCA

components, it is worth taking a look at the details of how CAA and Sparse PCA differ.

While Sparse PCA finds one-dimensional projections of data that maximize variance of

data, CAA finds two-dimensional projections where correlation between the two sets is

maximized. Furthermore, it is easy to see how the variables retrieved by CAA differ from

those retrieved by Sparse PCA. As previously mentioned, applying Sparse CCA to matrices

X = Y results in Sparse PCA solutions u = v [27]. Therefore, Sparse PCA can be written

as
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maxu,vu
TXTXv

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2
(6)

In the following, we analyze how the objective values retrieved by CAA (Equation 2)

and Sparse PCA (Equation 6) differ.

• Sparse PCA optimal criterion value retrieved:

uTXTXu = (
∑

i∈P uiXi)
T (
∑

j∈P ujXj)

=
∑
i∈P

∑
j∈P

uiujX
T
i Xj

for P = {i|ui 6= 0}

• CAA optimal criterion value retrieved:

uTXTXv − λutv = (
∑
i∈P1

uiXi)
T (
∑
i∈P2

viXi)− λuT v

for P1 = {i|ui 6= 0}, P2 = {i|vi 6= 0}

Provided that the grid search guarantees that the vectors u, v in the solution are

orthogonal, we can rewrite this as:

(
∑
i∈P1

uiXi)
T (
∑
j∈P2

vjXj) s.t. P1 ∩ P2 = ∅

= (
∑
i∈P1

∑
j∈P2

uivjX
T
i Xj) s.t. P1 ∩ P2 = ∅.

Notice that in the case of Sparse PCA, all interactions between variables in the subset

P are considered, while CAA only considers interactions across two disjoint groups. There-

fore, there are two types of interactions Sparse PCA considers that CAA does not: the

variance of each variable and correlation/covariance between variables in the same subset.

Note the first one is only relevant for Sparse PCA when using the covariance matrix, but

the second is relevant both when Sparse PCA is applied to the correlation matrix or to

the covariance matrix. As a result, CAA and Sparse PCA retrieve vectors that involve

different subsets of features, and such subsets correspond to different types of structures

in data.
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4.3 CAA-based anomaly detection

How can the outcome of CAA be used once it has been applied to a matrix X? CAA

produces several multiple-to-multiple linear correlation patterns. If the only goal is that of

characterizing and understanding the data, one can analyze the coefficients in the canonical

projections to understand which correlations are characteristic in a certain data set. In

addition, such projections can be used as the basis of an anomaly detection method, which

we introduce below.

CAA can be applied to a set (X ∈ Rn×m) of data points that are assumed to not be

anomalous. The result will be k ≤ m pairs of canonical vectors, where we will refer to the

ith pair as (u(i), v(i)), for i = 1, ..., k. Each of these vector pairs maps the data into a new

bi-dimensional space, where the x-axis corresponds to u(i)
t
Xt and the y-axis corresponds

to Xv(i). We define the projection of the data onto the ith canonical space as

Xproj
i = (u(i)

t
Xt, Xv(i))

We expect top canonical projections to yield scatter plots in which the training data

shows a strong diagonal tendency if the underlying correlations indeed exist. We can

characterize the resulting distribution by fitting a parametric density model (e.g. bivariate

Gaussian) or using a non-parametric density model (e.g. kernel density estimation),

Xproj
i ∼ Fi(θi)

This yields a characterization of the non-anomalous data points by:{
Canonical vectors (u(i), v(i)) for i = 1, ..., k

Distributions Fi parameterized by θi for i = 1, ..., k

Given a new data point x, it can be projected onto the k canonical projections and a

score of anomalousness can be computed for each projection using the likelihood (Equation

7).

si(x) = P(x|θi) (7)

Finally, a cumulative single score can be computed using an aggregation metric M(·),
where the choice of this metric depends on the particular application (e.g., minimum or

product), as shown in Equation 8.
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S(x) = M{i=1:k}(si(x)) (8)

For the experiments in this paper, we assume that the training data follows a bivariate

Gaussian in each of the canonical projections, i.e,

Xproj
i ∼ N (µi,Σi).

Therefore, the data set can be characterized by:{
(u(i), v(i)) for i = 1, ..., k k ≤ n
(µi,Σi) for i = 1, ..., k

For each i we obtain a characterization of the training data that involves multiple

features. A new data point x can be simultaneously mapped onto all k canonical spaces,

and given the assumption of a bivariate Gaussian, we can use Mahalanobis distance metric

as an equivalent to the likelihood. Therefore, our score si(x) is given by

si(x) = DMi(x
proj
i )

where xproji = (u(i)
T
xT , xv(i))

DMi(x
proj
i ) =

√
(xproji − µi)Σ−1i (xproji − µi)

(9)

Note DMi(·) is the Mahalanobis distance from xproji to N(µi, σi), where x is the current

observation.

If the new data point follows the same correlation patterns as the training data, all

of the Mahalanobis distances computed for it should be small. It can be expected that a

data point that is anomalous in the CAA sense would not match that behavior. It will

likely fail to follow one or multiple of these characterizations, which will result in one or

multiple large Mahalanobis distances. To marginalize the resulting distribution of scores

into a total score S(x), one conceivable option is maximization, as in Equation 10.

S(x) = max
i=1,...,k

DMi(x
proj) (10)

Maximization is only one of many possible ways to aggregate scores from multiple

CAA projections. We have found it effective in our threat detection application because
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it is typically sufficient for a gamma-ray spectrum measurement to substantially deviate

from the expectation in only a few energy bins to warrant attention. However, in other

applications alternative forms of S(x) may be more relevant and effective.

We calibrate the threat detection threshold following [12], by assuming a particular

rate of nuisance positives in training data (2-5%).

5 Experiments

5.1 Synthetic data

The first experiment aims to illustrate how known correlations can be successfully retrieved

by CAA.

(a) Synthetic correlation (b) Retrieved correlation

Figure 2: Comparison between a synthetic correlation pattern and the correlation pattern
retrieved by CAA. Equations have the form of kiX[, i] + kjX[, j], where X[, i], X[, j] are
the ith and jth columns of X and ki, kj are the linear combination coefficients.

A Gaussian bivariate distribution is generated with an assumed mean and covariance,

and 200 data points are sampled from it. A matrix X of dimensions 200 × 20 is created

such that there exist sparse vectors u, v, each with two non-zero components, for which

(uTXT , Xv) correspond to the previously generated Gaussian. Next, 70% of data is used

to train a CAA model and the rest is used for testing. Figure 2a contains a scatter plot of

the data sampled from the Gaussian, where the axes indicate the linear combinations of
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columns of X that map the original data onto the Gaussian. Figure 2b shows the projection

of both training and testing data onto the space determined by the first pair of canonical

vectors retrieved by CAA, where the equations on the axes correspond to the correlation

they establish. Note that the method is able to successfully identify the four features of

the data for which multiple-to-multiple linear correlation exists, even though they are not

grouped identically as in the original design.

5.2 Radiation threat detection

The radiation data used in our experiments is featurized into 128 disjoint energy bins, and

reflects photon counts obtained from gamma-ray spectrometer measurements. There are

20,000 records available for harmless background data, and 10,000 records for each of 15

types of threat-injected data, to simulate various radiological threats.

As it was previously explained, PCA-based spectral anomaly detection assumes that

the top few principal components represent the expected envelope of background variation,

and uses the residual after removing these top components as a spectral anomaly score. In

the case of CAA, multiple-to-multiple combinations of energy bins that are well correlated

provide a characterization model for background radiation. This model can be used as the

basis of the anomaly detection method described in Section 4.3, which identifies threats

when radiation spectra depart from the expected patterns of correlation.

For evaluation purposes, the CAA-based anomaly detector is compared to the PCA-

based anomaly detector introduced in Section 3.2. Additionally, a Sparse PCA anomaly

detector was designed and implemented for comparison. The algorithm is analogous to

the PCA alternative, with some minor modifications that enable the exchange of PCA for

Sparse PCA in the pipeline. The algorithm is described in detail in Appendix C.

All three models were trained using 10,000 background records, and the resulting mod-

els were evaluated on 15 types of radiation threats. Each of the 15 test sets contained

10,000 samples of injected data corresponding to a particular threat type, combined with

the remaining 10,000 background records. Three performance comparison metrics were

used: area under the ROC curve (AUC), recall at a fixed low false discovery rate, and false

discovery rate at a fixed recall rate of 50%. Figure 5 and Tables 1 and 2 summarize the

results, and Appendix A contains ROC curves for all 15 threat types used in the experi-

ments, with the false positive rate axis in logarithmic scale to enhance view at low false

positive rates, where most applications tend to reside. For ten of these fifteen threats CAA

16



Figure 3: Projection of background radiation and threat-injected background radiation
measurements onto space determined by one pair of CAA canonical vectors. The equations
indicate the multiple-to-multiple linear correlation that defines this projection. Data point
labeled with black x corresponds to the individual threat case analyzed in Figure 4.

performs significantly better than PCA and Sparse PCA according to all three performance

metrics, and only for one type of threat is another method significantly better than CAA

according to all metrics. This is threat type A, where PCA performs best, which can be

potentially explained by the fact that sparsity is apparently not very useful in this case

and a larger number of bins is necessary to detect this particular type of threat. When the

algorithms are applied to all threats combined into a single batch, CAA is by far better

than the other two competitors.

Figure 3 shows an example of the mapping onto the space determined by a pair of

CAA canonical vectors (u, v). The data points corresponding to background radiation, as

well as those corresponding to a particular threat, are mapped onto this projection. This

particular pair (u, v) is used most often to score the data points belonging to this particular

type of threat (listed as type “L” in table labels), meaning the one where the maximum

Mahalanobis distance to the Gaussian characterizing background radiation is found most

often, as defined in Equation 11.

17



(u, v) = arg max
ui,vi

DMi((u
T
i x

T , xvi))|ki=1 (11)

As Figure 3 shows, in this example the threat-injected data distribution visibly diverges

from the test set distribution of benign data. For this threat type, CAA model achieves

the AUC of 0.995, while PCA-based detector has the AUC of 0.821.

Th A B C D E F G H I J K L M N O all
cor. .72 .79 .79 .81 .87 .87 .88 .88 .88 .91 .92 .92 .94 .94 .96 NA

caa 7 4∗ 4∗ 14∗ 7∗ 7∗ 2 15∗ 100 14∗ 87∗ 14 20∗ 13∗ 5 21∗

pca 59∗ 1 1 1 2 2 1 3 100 7 8 13 2 1 4 14
Spca 6 1 1 2 3 3 1 4 100 5 9 6 2 2 6 10

Table 1: Performance of CAA, PCA and Sparse PCA in terms of recall rate (given in
%) at fixed false discovery rate of 0.01. Radiation threat types are ordered according to
the strength of the correlation between mean background spectrum and threat template.
Asterisks mark cases when the winning method performs significantly better than the
second-best.

Th A B C D E F G H I J K L M N O all
cor. .72 .79 .79 .81 .87 .87 .88 .88 .88 .91 .92 .92 .94 .94 .96 NA

caa 11 21∗ 21∗ 6∗ 13∗ 13∗ 41 6∗ 0 7∗ 0∗ 7∗ 4∗ 7∗ 18 8∗

pca 1∗ 43 39 33 42 41 53 33 0 23 12 15 28 32 42 27
Spca 14 46 49 34 27 27 43 20 0 17 9 15 36 35 16∗ 23

Table 2: Performance of CAA, PCA and Sparse PCA in terms of false discovery rate
(given in %) at a fixed recall of 50%. Radiation threat types are ordered according to
the strength of the correlation between mean background spectrum and threat template.
Asterisks mark cases when the winning method performs significantly better than the
second-best.

In addition to its good empirical performance, the proposed method yields readily

interpretable outputs. When a spectral measurement is identified as a possible threat, the

energy bins on which it fails to follow background patterns can be pointed out. This has

two main advantages: first, when analyzing an individual data point the user knows which

energy bins the algorithm used to make its decision, for easy adjudication of the results

(Figure 4b. Secondly, when applied to a batch of data associated to a particular threat
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(a) Threat batch: Heat map indicates the frequencies with which bins are used by CAA to flag
one particular threat type, together with mean background spectra and spectral template for that
threat.

(b) Adjudication of an individual measurement: Radiation spectrum the method correctly labels
as inclusive of threat signatures compared to background radiation distribution. Colored bins were
used to flag measurement as anomalous, corresponding to the support of the CAA canonical vectors
that define the projection where the maximum Mahalanobis distance to the baseline distribution was
found. This corresponds to CAA projection shown in Figure 3, where this individual measurement
is labeled with a black x.

Figure 4: Visualization of energy bins that are used to label gamma-ray measurements
as likely inclusive of threats.

type, it is possible to identify the bins on which the threat’s appearance systematically

differs from the background behavior, providing the way to characterize this type of threat

(4a).

Figure 4 shows the frequency with which energy bins are used to identify anomalies. The

top plot shows the usage frequency of bins for a threat-infused data batch associated to the
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Figure 5: AUC and confidence intervals for CAA, PCA and Sparse PCA applied to
detecting radiation threats of various types. Radiation threat types are ordered according
to correlation between mean background spectrum and threat template spectrum. The
right-most column shows performance when all threat types are combined in one batch.

threat type used in Figure 3. The bottom plot shows an example of a radiation spectrum

the method correctly labels as representative of a threat, mean of the background radiation

spectra used for training, and colors the energy bins that were used to label the data as

anomalous. This individual threat measurement is labeled with a black x in Figure 3. It is

interesting to see that even though the method is fully unsupervised, such bins correspond

to spikes in the injected threat template.

6 Application to other domains

Even though our development of CAA method is motivated by the radiation threat de-

tection task, it can be applied to many other domains. Such an example is breast cancer

diagnosis.

Breast cancer diagnosis presents similar challenges to the task discussed above. We

use the Wisconsin Breast Cancer data set [28]. It contains 699 cases of tumors, 683 after

removing those with missing values, labeled as either malignant (239) or benign (444).

Each sample is described with 9 numeric variables that take on values between 1 and 10.

Previous work has been done with this data to build predictive models that distinguish

malignant from benign tumors [19][13][1][18][21][29]. These approaches rely on supervised

classifiers. The use of single-class approaches to detect malicious tumors may however be

beneficial, given that some types of cancer are fairly rare and different from more typical
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cases. There has been research showing that cancer can follow multiple developmental

pathways in asynchronous orders [3], and even these studies are not known to be complete,

so there is much motivation to anticipate at least some cancerous tumors that do not follow

characteristics of the most common types of cancer, but are still identifiable as deviating

from typical patterns in benign data in some way. We therefore expect an unsupervised

approach, such as CAA, to be a contender with many supervised (and therefore more

informed about frequent types of cancer) methods, while potentially being more reliable

than supervised methods at detecting types of cancer that were not well represented in the

training set.

Hence, we approach this problem as an anomaly detection task, and train CAA us-

ing benign cases. We then use the CAA-based anomaly detection method to score both

malignant and benign test cases. To set the decision threshold, we set ρ = 0.05. This

means we assume 5% of our training data to be likely anomalous and choose the threshold

accordingly. As a comparison, we also apply the PCA-based anomaly detection approach

previously described in Section 3.2, the Sparse PCA-based anomaly detector developed for

comparison purposes in this paper, and a one-class SVM classifier.

We compare the four methods, as well as previous results reported in literature that use

supervised learning approaches. All our experiments were performed using 10-fold cross-

validation, and we report both mean accuracy and its standard deviation. In the case of

one-class SVM, which is very sensitive to the choice of parameters, we perform 10-fold

cross-validation for parameter tuning inside the benign-class training set in each fold to

find the optimal values of the kernel width, as well as the parameter which determines the

amount of training points that are considered outliers. The results are presented in Table

3.

Performance of CAA is comparable to that of Sparse PCA in our experiments and to

that of supervised methods reported in the literature, and it is better than both one-class

SVM and the PCA-based alternatives. One of the advantages of a single-class method

is that it can be expected to be more reliable than a supervised method when tasked to

detect types of cancer that were not present in the training set. The fact that CAA is

fully interpretable is also an advantage, as domain experts can see which features make a

sample appear anomalous. CAA yields multiple-to-multiple linear correlation scatterplot

in which the current data does not conform to the expected behavior, and in this particular

case correlations do not involve more than 4 to 5 tumor features at one time, facilitating

interpretability. Finally, classification criteria that are easily interpretable by a domain

21



Type Method Reference Accuracy ± sd (%)

Supervised LS-SVM [18] 98.53 N/A
Supervised K-SVM [29] 97.38 N/A
Supervised LLWNN [21] 97.20 N/A
Supervised Supervised fuzzy clustering [1] 95.57 N/A
Supervised NEFCLASS [13] 95.06 N/A
Supervised C4.5 [19] 94.74 N/A

Single-class Sparse PCA 96.33 ± 2.53
Single-class CAA 94.29 ± 2.7
Single-class one-class SVM 86.84 ± 4.2
Single-class PCA 81.06 ± 5.82

Most common value default 65

Table 3: Comparison of classification accuracy on the Wisconsin Breast Cancer Data
Set. Experiments were conducted using 10-fold cross-validation. Standard deviation is not
available for the results cited from the literature.

expert may lead to new qualitative insights of how different types of cancer manifest in

data.

7 Conclusions and future work

This paper presents Canonical Autocorrelation Analysis (CAA), a new method that au-

tomatically finds subsets of features of data that form strong multiple-to-multiple linear

correlations. It has been shown how CAA can be useful at anomaly detection tasks which

involve multivariate numeric data where detecting changes in the structure of correlations

may be of interest. CAA-based anomaly detector was applied to the task of radiation threat

detection, where it has proven to be successful. In addition to this, CAA can be a valuable

tool in many scenarios where in spite of an existing division between “non-anomalous” and

“anomalous”, the “anomalous” class is composed of multiple sub-classes, many of which

might be unknown or underrepresented in the training data, but are still important to

detect. To illustrate how CAA can be applied to other domains, breast cancer diagnosis

on a publicly available dataset was performed, where it has proven to be competitive to

supervised methods, while being potentially better at detecting unusual types of cancer

that are not present or that are underrepresented in the training data.

The models built by CAA are readily interpretable. The canonical projections are
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sparse, and even though the anomaly detection method analyzes every projection found,

often it is sufficient to consider only one of them to adjudicate a query data as possibly

anomalous, and each test case may invoke a different canonical pair as the most useful for

handling it. Interestingly, these most useful projections are usually also the ones which

provide the most interpretable intuition on why and how the particular query does not

seem to fit the reference distribution. Consider that each canonical projection spans the

axes of a 2-dimensional Cartesian system which happen to be sparse and easy to interpret

linear combinations of the native features of data, and it should be clear why CAA may be

particularly useful in applications where machine learning is used to aid humans in their

decision making.

The next steps for this research are multiple. In the radiation threat detection domain,

further validation against diverse field data sets will be performed, different criteria for

identifying the optimal level of sparsity will be explored, and the output of CAA will be

used to inform supervised (threat-type aware) methods that rely on energy windows for

detection.

The next steps towards further development of methodology include the extention of

CAA towards supervised learning and enabling discovery of non-linear relationships via

kernelization.
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A Radiation threat detection: ROC curves

Receiver operating characteristic (ROC) curves for all 15 types of threats for which CAA

was tested are shown below. All PCA, Sparse PCA and CAA were trained using benign

background radiation, and the resulting model was evaluated on similar background data

inclusive of signatures of 15 different types of threats. In the ROC curves, the false positive

rate axis is shown in logarithmic scale, to enhance view at low false positive rates.
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(a) Threat A (b) Threat B (c) Threat C

(d) Threat D (e) Threat E (f) Threat F

(g) Threat G (h) Threat H (i) Threat I

(j) Threat J (k) Threat K (l) Threat L

(m) Threat M (n) Threat N (o) Threat O

27



B PCA spectral anomaly detector

The PCA spectral anomaly detector used for comparison purposes in this paper is fre-

quently used in the radiation threat detection domain, and the description provided in this

abstract can also be found in [24]. The algorithm first filters the energy data and per-

forms smoothing via a 10s rolling window. It then computes the special covariance matrix

shown in Equation 12, where we assume the background data is a matrix X ∈ Rn×q. This

covariance matrix retains 0.01 of the mean, instead of fully centering the data.

Σ =
XXT

q
− 0.99mmT

mj =

n∑
i=1

Xi,j

(12)

The correlation matrix C = AΣA is later calculated, where A is the design matrix

A = diag(
1

diag(Σ + 1)
)

Finally, the Singular Value Decomposition is performed on the correlation matrix and

the basis matrix T is created as

T = Iq −A−1UPCU
T
PCA

where UPC contains the top principal component eigenvectors. Finally, the residuals

can be obtained as σ =|| TXT
test ||2.

C Sparse PCA spectral anomaly detector

Even though Sparse PCA is not generally used in the radiation threat detection domain,

a Sparse PCA spectral anomaly detector was designed and implemented for comparison

purposes in this paper. As in the case of the PCA-based approach, the algorithm first filters

the energy data and performs smoothing via a 10s rolling window. It then normalizes the

data to have mean of 0.01 the original mean and and Euclidean length of each column

equal to 1, where each column corresponds to a variable.
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Top sparse principal components, USpc, are extracted using the algorithm in [22], which

is itself based on the formulation done in [30].

The basis matrix T is created as

T = Iq − USpcU
T
Spc

Given a new data set Xtest, it is first normalized using the mean and Euclidean length

of the training data, and then residuals are obtained as σ =|| TXT
test ||2.
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